Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Short intermolecular $\mathrm{N} — \mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ contacts in 1,3-dibromo-5,5-dimethyl-imidazolidine-2,4-dione

Rafal Kruszynski

Institute of General and Ecological Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland
Correspondence e-mail: rafal.kruszynski@p.lodz.pl

Received 7 March 2007
Accepted 22 March 2007
Online 14 June 2007
In the title compound, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, all atoms except for the methyl group lie on a mirror plane in the space group Pnma (No. 62). All bond lengths are normal and the five-membered ring is planar by symmetry. Two short intermolecular N $\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ contacts $[\mathrm{Br} \cdots \mathrm{O}=2.787$ (2) and 2.8431 (19) \AA] are present, originating primarily from the O -atom lone pairs donating electron density to the antibonding orbitals of the $\mathrm{N}-\mathrm{Br}$ bonds (delocalization energy transfers 3.27 and $2.11 \mathrm{kcal} \mathrm{mol}^{-1}$). The total stabilization energies of the $\mathrm{Br} \cdots \mathrm{O}$ interactions are 3.4828 and $2.3504 \mathrm{kcal} \mathrm{mol}^{-1}$.

Comment

In the search for uncommon intermolecular interactions in the solid state, the author's interest has focused on compounds containing short $X \cdots \mathrm{O}$ intermolecular contacts $(X=$ halogen). The structure of the title compound, dibromantin, (I), is presented here and is a unique example of short intermolecular $\mathrm{N}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ contacts. Dibromantin (1,3-di-bromo-5,5-dimethylhydantoin or 1,3-dibromo-5,5-dimethyl-imidazolidine-2,4-dione) is a commercially available analytical reagent used in the pharmaceutical sciences (de Bertorello et al., 1967; Hilp, 2002a,b), as a brominating reagent (an alternative to N-bromosuccinimide and its derivatives; Jolles, 1966), as a drinking water purifier and as a popular water treatment biocide (Unhoch \& Vore, 2004).

All intramolecular bond lengths and angles in (I) are normal (Fig. 1). All atoms except the methyl group lie on the special position c with site symmetry m. Thus, the fivemembered ring is planar by symmetry (and without disorder).

The structure of (I) in the solid state has interesting features. There are short intermolecular $\mathrm{N}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ contacts of $2.787(2)\left(\mathrm{Br} 1 \cdots \mathrm{O} 2^{\mathrm{i}}\right.$ and $\left.\mathrm{O} 2 \cdots \mathrm{Br} 1^{\mathrm{i}}\right)$ and 2.8431 (19) $\AA\left(\mathrm{Br} 2 \cdots \mathrm{O} 1^{\mathrm{iii}}\right.$ and $\left.\mathrm{O} 1 \cdots \mathrm{Br}^{2 \mathrm{iv}}\right)$, distinctly $(>10 \%)$ shorter than the sum of the van der Waals radii ($3.35 \AA$; Emsley, 1997) [symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z$; (iii) $x+\frac{1}{2}, y,-z+\frac{1}{2}$; (iv) $\left.x-\frac{1}{2}, y,-z+\frac{1}{2}\right]$. Moreover, although $\mathrm{Br} \cdots \mathrm{O}$ short contacts have been extensively studied over the past few decades (Hassel \& Romming, 1962; Leser \& Rabinovich, 1978; Ramasubbu et al., 1986), only one structure with a similar $\mathrm{N}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ short contact is known, namely N-bromosuccinimide, (II) (Jabay et al., 1977), where the $\mathrm{Br} \cdots \mathrm{O}$ distance is $2.80 \AA$. Additionally, several structures have been reported with other halogen atoms involved in analogous short contacts: methyl 2-(3-oxo-1-phenylbenzo[c-1,5]aziodolin-2-yl)propanoate (NI \cdots OC $=2.781 \AA$; Zhdankin et al., 2003), 1-acetoxy-1,2-benziodazol-3(1H)-one (NI . . OC = 2.867 Å; Zhdankin et al., 1997), N-iodosuccinimide (NI \cdot OC $=$ 2.580 Aं; Padmanabhan et al., 1990), N-chlorosuccinimide, (III) $(\mathrm{NCl} \cdots \mathrm{OC}=2.880 \AA$ A ; Brown, 1961), N -chloro- N -(2,6dichlorophenyl)trichloroacetamide ($\mathrm{NCl} \cdots \mathrm{OC}=2.829 \AA$; Gowda et al., 1996), 1,3-dichloro-1,3-diazetidine-2,4-dione ($\mathrm{NCl} \cdots \mathrm{OC}=2.948 \AA$; Belaj et al., 1991) and N-chlorophthalimide ($\mathrm{NCl} \cdots \mathrm{OC}=2.946 \AA$; Ghassemzadeh et al., 1994).

In compound (I), the $\mathrm{N}-\mathrm{Br} \cdots \mathrm{O}$ angles of 179.24 (9) and $160.70(9)^{\circ}$, and the $\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ angles of 170.9 (2) and $148.9(2)^{\circ}$, are comparable with those in (II) (169.5 and 140.9°, respectively). In both compounds, the five-membered rings are in a trans arrangement to the $\mathrm{Br} \cdots \mathrm{O}$ interaction, but in (I) the rings are coplanar, while in (II) they are inclined at 127°. The contacts extend molecules of (I) into a one-dimensional ladder-type double chain along the a axis direction (Fig. 2) with an $R_{3}^{3}(12)$ motif (Bernstein et al., 1995).

The Cambridge Structural Database (Version 5.28; Allen, 2002) was searched for $\mathrm{C}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ contacts shorter than $3.2 \AA$ (as $\mathrm{N}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ interactions are rare). The number of reported $\mathrm{Br} \cdots \mathrm{O}$ interactions decreases as the $\mathrm{Br} \cdots \mathrm{O}$ distance shortens, the $\mathrm{C}-\mathrm{Br} \cdots \mathrm{O}$ angle adopts values in the range $140-180^{\circ}$ with no single maximum, and the $\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ angle adopts values in the range $90-180^{\circ}$ (maximum value 144°). Thus, the preferred angles are neither orthogonal nor

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
linear. Examination of the two-dimensional contour plots of angle versus distance (Fig. 3) reveals two preferred pairs of $\mathrm{C}-\mathrm{Br} \cdots \mathrm{O}$ angle and $\mathrm{Br} \cdots \mathrm{O}$ distance, $162.4^{\circ} / 3.167 \AA$ and $172.0^{\circ} / 3.052 \AA$, and three preferred pairs of $\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ angle and $\mathrm{Br} \cdots \mathrm{O}$ distance, $117.7^{\circ} / 3.170 \AA, 136.9^{\circ} / 3.113 \AA$ and $141.0^{\circ} / 3.087 \AA$. The values in (I) (as + symbols in Fig. 3) have been removed from the pairs.

For compound (III) (N-chlorosuccinimide), it was proposed that electrostatic attraction exists between the $\mathrm{N}-\mathrm{Cl}$ and $\mathrm{O}=\mathrm{C}$ groups because of the large polarization of these groups (Brown, 1961) as $\mathrm{N}^{\delta-}-\mathrm{Cl}^{\delta+} \ldots \mathrm{O}^{\delta-}=\mathrm{C}^{\delta+}$. Due to the chemical similarity of the interactions in (I) and (III), electrostatic attraction can also be proposed for (I), and in order to confirm this assumption quantum mechanical calculations were performed. The molecular electronic properties have been calculated at a single point for both the diffraction-derived coordinates and the optimized structure, and these are comparable to within three standard deviations. The intermolecular interactions were calculated for sets containing between three and 23 molecules; further details are available in the archived CIF.

The calculations show that the existence of intermolecular interactions leads to a decrease of p character in the N, O atom hybrids and increasing p character in the Br, C atom hybrids. This agrees with the increased polarization of the aforementioned bonds and the larger charges on the interacting atoms (Table 2). The N, O and methyl group C atoms have δ^{-} charges and the remainder of the atoms have δ^{+}charges, confirming the Brown (1961) postulates about polarization. The intermolecular interactions affect only the charges of the $\mathrm{N}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ atoms (Table 2). Additionally, it is observed that the $\mathrm{N}-\mathrm{Br}$ bond in the interacting molecules is created by less electron density than in non-interacting molecules. The energies of the intermolecular interaction are 3.4828 and $2.3504 \mathrm{kcal} \mathrm{mol}^{-1}\left(1 \mathrm{kcal} \mathrm{mol}^{-1}=4.184 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ for $\mathrm{Br} 1 \cdots \mathrm{O} 2$ and $\mathrm{Br} 2 \cdots \mathrm{O} 1$, respectively [including the basis-set superposition error (Boys \& Bernardi, 1970) of $0.1147 \mathrm{kcal} \mathrm{mol}^{-1}$]. The second-order perturbation theory analysis of the Fock matrix in the natural bond orbital (NBO) basis sets leads to the conclusion that these interactions are

Figure 2
(a)

Part of the molecular packing of (I), showing (a) the short intermolecular contacts (dashed lines) and (b) the overlapping of the van der Waals spheres.
formed mostly by the O -atom lone pairs donating electron density to the antibonding orbitals of the $\mathrm{N}-\mathrm{Br}$ bonds, with delocalization energies of 3.27 and $2.11 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, as above, proving that electrostatic attraction between the largely polarized groups is not responsible for these interactions. Noteworthy is the fact that, in separate molecules, there is no $2 p_{y}$ coefficient in the $\mathrm{h}_{\mathrm{C} 1}(\sigma$ bond $)$ and $\mathrm{h}_{\mathrm{O} 1}(\sigma$ bond) hybrids. This is caused by coupling of the N1 and N2 atom lone-pair electrons with the antibonding $\mathrm{C} 1-\mathrm{O} 1$ orbital (interaction energies of 83.39 and $54.13 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively). For the $\mathrm{C} 2-\mathrm{O} 2$ bond, only one such interaction is available with the N 2 atom lone pair (interaction energy $76.04 \mathrm{kcal} \mathrm{mol}^{-1}$). In sets containing the $\mathrm{Br} \cdots \mathrm{O}$ interactions, the diminishing $2 p_{y}$ coefficient is not observed due to the O 1 atom electron-density changes (and, in consequence, changes in the natural orbital composition) caused by the intermolecular interactions.

The $a b$ initio calculations prove that the $\mathrm{N}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ interaction is bonding in character, but it is weak and its

(a) Contour plot showing the relationship between the $\mathrm{C}-\mathrm{Br} \cdots \mathrm{O}$ angle and the $\mathrm{Br} \cdots \mathrm{O}$ distance. (b) Contour plot showing the relationship between the $\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ angle and the $\mathrm{Br} \cdots \mathrm{O}$ distance. In both plots, the values for (I) are indicated by + symbols.
energy is comparable with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Desiraju \& Steiner, 1999).

Experimental

Compound (I) was synthesized according to the method of Markish \& Arrad (1995). To an aqueous solution (200 ml) containing NaOH $(5.00 \mathrm{~g})$ and 5,5 -dimethylhydantoin $(8.40 \mathrm{~g}), \mathrm{Br}_{2}(22.050 \mathrm{~g})$ was added dropwise over a period of 1 h . The reaction temperature was kept at 284.4 (3) K and the reagents were stirred for 2 h . The resulting precipitate was filtered off using a Buchner funnel and washed with cold water [275 (1) K] until bromine was not detected in the filtrate. The resulting fine crystalline dibromantin was dried in a vacuum desiccator for 24 h (yield 97.3%; purity 99.8%, determined by the iodometric method). Colourless crystals of (I) suitable for X-ray diffraction were obtained by recrystallization from a saturated solution in water (0.22 g in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$) at 297 (1) K (7 weeks). This may seem to be a poor solvent as dibromantin has a low solubility in water, but usage of organic solvents (especially alcohols) causes dibromantin to decompose to 5,5-dimethylhydantoin before crystals can be obtained. Attempts to recrystallize (even from water) commercially available dibromantin always led to growth of 5,5 -dimethylhydantoin. This was probably caused by decomposition catalyzed by small amounts of decomposition products always present in commercial dibromantin ($3 \% w / w$ Fluka and $2 \% ~ w / w$ Aldrich).

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=285.94$
Orthorhombic, Pnma
$a=7.9749$ (2) A
$b=7.9205$ (2) \AA
$c=13.3152(3) \AA$

$$
\begin{aligned}
& V=841.06(4) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=9.59 \mathrm{~mm}^{-1} \\
& T=291.0(3) \mathrm{K} \\
& 0.12 \times 0.08 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Kuma KM-4 CCD area-detector diffractometer
Absorption correction: numerical (X-RED; Stoe \& Cie, 1999)
$T_{\text {min }}=0.399, T_{\text {max }}=0.558$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.040$
$S=1.12$
815 reflections

Table 1
Natural atomic charges (a.u.) for one molecule (column A) and for sets of interacting molecules (column B).

Standard deviations originate from differences in the values obtained from different numbers of molecules used in the calculations.

Atom	A	B
N1	-0.67729	$-0.69853(6)$
Br1	0.28887	$0.32537(7)$
N2	-0.69288	$-0.70957(5)$
Br2	0.32643	$0.36190(7)$
C1	0.99779	$1.01303(3)$
O1	-0.68595	$-0.71403(5)$
C2	0.84446	$0.86462(4)$
O2	-0.67184	$-0.70829(6)$
C3	0.15930	$0.15918(11)$
C4	-0.45606	$-0.45629(11)$
H4A	0.16808	$0.16846(14)$
H4B	0.17763	$0.17725(14)$
H4C	0.16591	$0.16583(14)$

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG3081). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Belaj, F., Nachbaur, E., Faleschini, G. \& Janoschek, R. (1991). Heteroatom Chem. 2, 487-494.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bertorello, M. M. de (1967). J. Pharm. Sci. 56, 923-924.
Boys, S. F. \& Bernardi, F. (1970). Mol. Phys. 19, 553-566.
Brown, R. N. (1961). Acta Cryst. 14, 711-715.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. IUCr Monograph on Crystallography 9, pp. 73-80. Oxford University Press.
Emsley, J. (1997). The Elements, 2nd ed., pp. 44, 202. Warsaw: PWN.
Ghassemzadeh, M., Harms, K., Dehnicke, K. \& Magull, J. (1994). Z. Naturforsch. Teil B, 49, 506-512.
Gowda, B. T., Dou, S. \& Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627-636.
Hassel, O. \& Romming, Ch. (1962). Q. Rev. Chem. Soc. 16, 1-18.
Hilp, M. (2002a). J. Pharm. Biomed. Anal. 28, 337-343.
Hilp, M. (2002b). Pharmazie, 57, 172-175.
Izumi, F. \& Dilanian, R. A. (2005). IUCr Commission on Powder Diffraction Newsletter, No. 32, pp. 59-63.
Jabay, O., Pritzkow, H. \& Jander, J. (1977). Z. Naturforsch. Teil B, 32, 14161420.

Jolles, Z. E. (1966). Bromine and its Compounds, pp. 393-394. New York: Academic Press.
Kuma (2000). CrysAlis CCD and CrysAlis RED. Versions 1.163. Kuma Diffraction, Wrocław, Poland.
Leser, J. \& Rabinovich, D. (1978). Acta Cryst. B34, 2250-2252.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Markish, I. \& Arrad, O. (1995). Ind. Eng. Chem. Res. 34, 2125-2127.
Padmanabhan, K., Paul, I. C. \& Curtin, D. Y. (1990). Acta Cryst. C46, 88-92.
Ramasubbu, N., Parthasarathy, R. \& Murray-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308-4314.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1999). X-RED. Version 1.18. Stoe \& Cie, Darmstadt, Germany.
Unhoch, M. J. \& Vore, R. D. (2004). Directory of Microbicides for the Protection of Materials, A Handbook, edited by W. Paulus, pp. 141-155. Heidelberg: Springer.
Zhdankin, V. V., Arbit, R. M., McSherry, M., Mismash, B. \& Young, V. G. Jr (1997). J. Am. Chem. Soc. 119, 7408-7409.

Zhdankin, V. V., Koposov, A. Y., Su, L., Boyarskikh, V. V., Netzel, B. C. \& Young, V. G. Jr (2003). Org. Lett. 5, 1583-1586.

